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CHATASSERT: LLM-based Test Oracle Generation
with External Tools Assistance

Ishrak Hayet, Adam Scott, and Marcelo d’Amorim

Abstract—Test oracle generation is an important and challeng-
ing problem. Neural-based solutions have been recently proposed
for oracle generation but they are still inaccurate. For example,
the accuracy of the state-of-the-art technique TECO is only 27.5%
on its dataset including 3,540 test cases.

We propose CHATASSERT, a prompt engineering framework
designed for oracle generation that uses dynamic and static
information to iteratively refine prompts for querying large
language models (LLMs). CHATASSERT uses code summaries
and examples to assist an LLM in generating candidate test
oracles, uses a lightweight static analysis to assist the LLM in
repairing generated oracles that fail to compile, and uses dynamic
information obtained from test runs to help the LLM in repairing
oracles that compile but do not pass.

Experimental results using an independent publicly-available
dataset show that CHATASSERT improves the state-of-the-art
technique, TECO, on key evaluation metrics. For example, it
improves Acc@1 by 15%. Overall, results provide initial yet
strong evidence that using external tools in the formulation of
prompts is an important aid in LLM-based oracle generation.

Index Terms—test oracle generation, large language models
(LLMs), tool-augmented LLMs, prompt engineering framework

I. INTRODUCTION

Software testing is a widely adopted technique for software
quality assurance, but it is very time-consuming. Automated
test case generation promises to reduce this cost, but it is
challenging. Test oracle generation is particularly challenging
to automate as the oracle needs to capture the intent of the
program to be tested. Neural techniques have been recently
proposed to generate oracles based on contextual data [1]–
[5] but they are still inaccurate. For example, the state-of-
the-art (SoTA) approach for test oracle generation, TECO [5],
produces the ground truth oracle among the ten oracles it
reports in only 42% of the cases (§V-D). It is therefore
imperative to improve the accuracy of these techniques if we
want them to work in realistic settings.

Recent prior work applied large language models (LLMs)
in a variety of code-related tasks, e.g., program repair [6]–[9],
code synthesis [10], test generation [5], [11], [12], and filtering
static analysis warnings [13]. LLMs, such as CHATGPT [14],
are convenient to developers because they do not need to
gather large amounts of data to train a model for a specific
task. LLMs are pre-trained on simple general-purpose tasks
using huge amounts of data. They can be useful for solving
more specific downstream tasks provided users carefully de-
sign prompts describing the task to be solved (§II-A).

Ishrak, Adam, and Marcelo are with North Carolina State University,
Raleigh, NC 27695 USA. (e-mail: {ihayet,amscott9,mdamori}@ncsu.edu)

@Test
public void testCookieSentBackToClient() throws ... {
this.testServer.cookiesToSend.add(new Cookie(...));
HttpGet httpget=new HttpGet("STR");
ResponseHandler<String> rHandler=new Basic...();
this.httpclient.execute(httpget, rHandler);
CookieStore cookies=this.httpclient.getCookieStore();
assertEquals(1, cookies.getCookies().size());

}
//Focal
public Cookie(String name, String value, int numDays)

{...}

(a) Test sequence and associated focal method from project NanoHttpd [15]

assertThat(cookies, hasItem("STR"));
Cookie cookie = cookies.

get("STR");(C,...,=,c,...,.,g,e,t,(,",S,T,R,",),;);
assertThat(cookies).hasSize(1);
assertEquals(1, cookies.size());
assertNotNull(cookies);

(b) Assertions generated by the TECO. Highlighted assertions are invalid.

assertEquals(1, cookies.getCookies().size());
assertEquals("STR",cookies.getCookies().get(0).getName());
assertTrue(cookies.getCookies().size() > 0);
assertEquals("STR",cookies.getCookies().get(0).getValue());
assertNotEquals("STR",cookies.get...().get(0).getDomain());

(c) Assertions generated by CHATASSERT. Highlighted assertion is an exact
match with the ground truth.

Fig. 1: Comparison of assertions generated by TECO and CHATASSERT for
the test case testCookieSentBackToClient.

To assess how promising the use of LLMs for oracle
generation can be, we evaluate how a CHATGPT [16] con-
figured with a simplistic prompt compares against the SoTA
technique TECO [5] (§V-B). Very poor results would indicate
a low potential for using LLMs for oracle generation. Results
obtained by running TECO and the simplistic CHATGPT-
based tool on the TECO dataset show that the LLM-based
tool achieves an Acc@1 score 1% higher compared to that
of TECO. We interpret this result as encouraging to motivate
the use of LLMs for oracle generation.

Yet, we observe that without appropriate prompt en-
gineering, LLMs face an important challenge of reason-
ing about the code being analyzed [17]–[20]. LLMs are
oblivious to the functionality to be tested in the pro-
gram. Figure 1a shows an example test case from project
NanoHttp [15] asserting that the size of the set that the
expression cookies.getCookies() denotes should be
one. When provided with the prefix of the test case, excluding
the assertion, the SoTA technique TECO [5] often generates
inaccurate and invalid assertions as Figure 1b highlights.
TECO is limited to using a restrictive set of code features for
training, including information about local types, absent types,
unset fields, setup methods, last called methods, and similar
statements. Additionally, TECO lacks the ability to repair the
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failing or non-compiling test oracles it generates.
We propose CHATASSERT to mitigate those limitations.

CHATASSERT leverages static and dynamic information to
iteratively refine the prompts of a conversational LLM,
such as CHATGPT. Through iterative refinement of prompts,
CHATASSERT avoids incoherent outputs and eventually gen-
erates exact matches. For example, CHATASSERT produces
the exact match assertion for the test from Figure 1. Notably,
CHATASSERT can handle complex assertions by understanding
the relationships between methods and objects within the code.
For example, CHATASSERT is capable of recognizing that
the getCookies method is declared in the type associated
with the variable cookies. CHATASSERT observes that the
method getCookies returns a List and appropriately calls
the size method on the returned List object. As a result,
CHATASSERT produces the correct assertion in this case.
Figure 1b shows the invalid assertion that TECO generates for
this case. We conjecture that TECO fails to identify that the
method getCookies could be called on the object cookies.
Also, TECO does not prevent the generation of syntactical
nonsense as reflected in the fragment starting with (C,....

CHATASSERT mitigates the semantic gap problem of LLMs
by iteratively refining prompts with sensible information ob-
tained from external tools, e.g., the output of code summa-
rization tools, the compiler output, the output of test runs,
etc. CHATASSERT has two modes of execution: generation
and repair. In generation mode, CHATASSERT uses code
summaries (CS) and examples (EX) to produce candidate test
oracles. In repair mode, CHATASSERT uses a lightweight static
analysis to assist the LLM in repairing oracles that fail to
compile (SR) and it uses dynamic information obtained from
test runs to assist the LLM in repairing oracles that compile
but do not pass (DR). CHATASSERT alternates between these
two modes of execution. CHATASSERT queries the LLM iter-
atively, using prompts augmented with information collected
from previous iterations.

To understand the impact of CHATASSERT’s prompt engi-
neering method, we rigorously evaluated its oracle generation
capabilities when configured with various open and close-
sourced LLMs. This study involved testing LLMs with all
features of CHATASSERT enabled and then with no features
enabled across four popular LLMs, namely Mistral [21],
Codestral [22], and Magicoder [23], and CHATGPT [14]. The
results consistently show that CHATASSERT’s prompt engi-
neering significantly enhances the performance of all tested
LLMs. Notably, CHATGPT with CHATASSERT’s prompt en-
gineering exhibits a 30% performance improvement compared
to CHATGPT with a simplistic prompt. This improvement is
well above the improvement that the other LLMs obtain with
CHATASSERT’s prompt engineering; 9% on average. These
findings highlight the crucial role of prompt engineering in
unleashing the full potential of LLMs for oracle generation.
Table III presents detailed results of this comparison.

We compared CHATASSERT against prior work, including
ATLAS [1], TOGA [4], and TECO [5]. To sum up, results
show that CHATASSERT performs better overall. For example,
compared to TECO, CHATASSERT improves Acc@10 by 12%
and improves three of the four standard NLP metrics we

considered: BLEU, CodeBLEU, and Rouge. Table IV shows
results. Mutation scores of the oracles that CHATASSERT
generate are also significantly higher compared to that of
TECO. Figure 6 summarizes the results.

We conducted an ablation study to assess the contribution
of each of CHATASSERT’s features. We found that all features
had an impact on CHATASSERT’s performance. The contribu-
tion of examples (i.e., feature EX) was slightly less than that
of the other features. Table VI shows the results.

Finally, we compared the performance of the variant of
CHATASSERT that excludes the feature to dynamically repair
oracles based on the test outputs (CHATASSERT-DR). The
rationale is that TECO does not support that feature. Results
also show that CHATASSERT-DR is superior to TECO. For
example, it outperforms TECO on Acc@10 by 5%.

We make the following contributions:
• A novel oracle generation technique that employs prompt

engineering with static and dynamic analysis to reduce
the semantic gap between the LLMs and the objects under
analysis (i.e., the program and the test sequence);

• A tool implementing the prompt engineering framework
for oracle generation;

• A comprehensive evaluation showing the positive impact
of the proposed prompt engineering method.

Overall, results provide initial yet strong evidence of the
effectiveness of CHATASSERT. Our artifacts are publicly avail-
able: https://github.com/ncsu-swat/chatassert.

II. BACKGROUND

This section provides background information for this paper.

A. Terminology

A large language model (LLM), such as InCoder [24],
Polycoder [25], and CHATGPT [14], is trained on massive
amounts of data using general-purpose tasks such as predicting
a masked token and predicting the following sentence. Users
interact with an LLM through a prompt, which describes
a specific task. For Software Engineering tasks, a prompt
typically includes code and text [26]. Users of LLMs often
can control the temperature, a variable that sets the level of
(un)predictability of answers.

The test setup method is responsible for creating or ini-
tializing the data that will be accessed by the test. A test
prefix is the set of statements preceding the assert statement
that one wishes to generate [1]. A focal method is a method,
reachable from the test prefix, that is more likely to be the
target of the generated assertion. (Prior work has shown that
providing a focal method improves the performance of oracle
generation techniques [1].) Different heuristics to compute
focal methods exist [27]. CHATASSERT uses the heuristic
provided by Watson and others [1]. These three elements –the
setup method, test prefix, and the focal method– are commonly
used as input for test oracle generation techniques.

A plausible assertion is an assertion that seems reasonable,
according to an objective definition (e.g., confidence scores
of prediction models), but it is not guaranteed to compile
or execute. An executable assertion is a plausible assertion
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that compiles and runs successfully [5]. Furthermore, it is
also important to measure how often techniques can predict
the oracle originally present in a test case, i.e., the ground
truth. The generated oracle is an exact match in that case.
To sum up, assertions are related as follows Exact Match ⊆
Executable ⊆ Plausible.

B. Evaluation Metrics for Oracle Generation

Oracle generation techniques, including TECO, produce
multiple assertions on output. For example, TECO ranks the
assertions it produces based on their compile, pass, and
beam search scores associated with the model output. These
techniques use a ranking score to evaluate their performance.
Acc@k is a popular metric for that. It evaluates how often the
ground truth appears among the top k elements in a ranked
list. To compute Acc@10, for example, we check the presence
of the ground truth oracle on each one of the first 10 reported
oracles and consider that the generation task was successful if
one of them is an exact match. The accuracy value is obtained
by computing the fraction of cases an exact match is found.

Prior work also considers NLP metrics that measure the
distance of solutions to the ground truth. These metrics com-
plement the evaluation based on exact matches (Acc@k). More
precisely, they account for the cases where exact matches
are not produced but solutions are not “too far” [2], [5]. We
consider standard NLP metrics used in prior work, namely,
BLEU [28], CodeBLEU [29], ROUGE [30], and EditSim [31].
BLEU score computes the n-gram similarity between a can-
didate and a reference. CodeBLEU computes similarity from
corresponding abstract syntax trees and data-flow structures of
candidate and reference. ROUGE also uses n-gram similarity;
similar to Nie et al. [5], we use the F1-score of the ROUGE-L
metric for that. EditSim uses the Levenshtein distance [32].

III. ILLUSTRATIVE EXAMPLE

Figure 2 shows one example to illustrate CHATASSERT. In
the interest of space, we selected a short example. Figure 2a
shows an example test prefix from the OrientDB [33] project,
which implements a NoSQL database. Figure 2b shows the
dialogue between CHATASSERT and CHATGPT to generate an
oracle for the given test prefix. In this example, CHATASSERT
produces an oracle matching the one from the original code.
The test prefix from Figure 2a creates a document object, doc,
and calls a method to reset a flag on that object indicating that
it is in a “dirty” state.

Figure 2b shows the conversation between CHATASSERT
and CHATGPT. The symbol P.x.y identifies a prompt with the
number x and a position within that prompt with the number y.
CHATASSERT starts the conversation by requesting CHATGPT
to summarize a fragment of the application code related to the
test (Figure 2a). For this example, it provides the code for the
class ODocument and the code for the method unsetDirty

and asks CHATGPT to summarize them. Figure 4 shows
the dialog to obtain these summaries. (Section IV-C details
the summarization task.) Code summaries add contextual and
explanatory data to the prompts, which has shown to benefit
LLM’s performance [18], [34]–[36]. CHATASSERT conjoins

@Test
public void testRemoveNotificationOne() {
final ODocument doc = new ODocument();
ORecordInternal.unsetDirty(doc);
<AssertPlaceholder>;}

(a) Example test sequence from project OrientDB [33].

P1.1 I want you to generate a JUnit assertion for a test.
For that task, consider the following related classes
and methods:

P1.2 <include A1 and A2 from Figure 4>

P1.3 Now, given test prefix <TEST> and focal method <FOCAL
>, generate a JUnit assertion:
<TEST>:
‘‘‘
@Test
public void testRemoveNotificationOne ( ) {

final ODocument doc = new ODocument ( ) ;
ORecordInternal . unsetDirty ( doc ) ;
<AssertPlaceHolder>;

}
‘‘‘
<FOCAL>: --ommited for space

A1. Based on the provided test prefix and the focal method,
one junit assertion can be as follows:

‘‘‘
assertTrue(doc.isDirty());
‘‘‘

P2. I am getting the following assertion error: java.lang.
AssertionError at com.orientechnologies.orient.core.db.
record.TrackedSetTest.testRemoveNotificationOne(
TrackedSetTest.java:110). Can you fix the assertion?

A2. Since there is an assertion error, you can try the
following assertion which checks if doc.isDirty() is
false:
‘‘‘
assertFalse(doc.isDirty());
‘‘‘

(b) Sequence of interactions between CHATASSERT and CHATGPT.

Fig. 2: Illustrative example of CHATASSERT’s oracle generation for the input
from Figure 2a. CHATASSERT (1) summarizes the code (Figure 4 shows the
conversation); (2) formulates a task to the LLM (P1.1-1.3); and (3) runs the
test with the generated assertion, observes a test failure and requests a repair
to the generated assertion (P2).

these summaries (see P1.2) and elaborates the first prompt
asking CHATGPT to produce an assertion for the test method
in P1.3 from Figure 2a. It is worth noting that the CHATGPT
API does not provide sessions to save data across queries. Rel-
evant information needs to be communicated across queries.

In response to the first prompt, CHATGPT replies with
the assertion assertTrue(doc.isDirty()). Note that the
method isDirty was made visible to CHATGPT from the
summary. CHATASSERT replaces <AssertPlaceHolder> in
the test method with the generated assert statement and runs
the test. The execution results in a test failure. CHATASSERT
extracts the error message from the test output to refine the
prompt and requests CHATGPT to repair that assertion (P2).
CHATASSERT uses the runtime information from the output
of the test run in the formulation of another prompt. This
time, CHATASSERT obtains an assertion that matches with the
ground truth, namely assertFalse(doc.isDirty()).

This example shows some important features of
CHATASSERT. It shows the use of code summarization
to improve oracle generation (P1.2), the use of dynamic
information –associated with test runs– to repair assertions
that make tests fail (P.2), and the use of feedback to improve
the quality of subsequent interactions (P.2).
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IV. APPROACH

CHATASSERT is an automated test oracle generation tech-
nique that uses external tools to obtain sensible information
to build prompts for querying an LLM.

A. Overview

CHATASSERT takes as input the test metadata (e.g., test
prefix), the program under test, and a set of configuration
options, and produces a set of candidate oracles on output.

Figure 3 lays out the organization of CHATASSERT. An
execution of CHATASSERT has two stages: (1) generation and
(2) repair. The generation mode is responsible for querying the
LLM for new oracles whereas the repair mode is responsible
for fixing an oracle that either does not compile or compiles
but fails. CHATASSERT queries the LLM incrementally, re-
fining the prompt in every round. Intuitively, CHATASSERT
provides feedback to the LLM about the observations it makes
during the execution. For example, CHATASSERT maintains a
list of oracles that do not compile along with corresponding
compiler error messages to assist the LLM in producing better
answers. Querying the model in batch prevents specialized
intervention. It is worth noting that CHATASSERT does not
sort the oracles it generates. The problem of ranking oracles
is orthogonal and out of scope for this paper.

1) Features: Table I shows CHATASSERT’s features. Code
Summarization (CS) is the feature that extracts natural lan-
guage summaries describing methods and classes involved
in the test prefix and adds them into the prompt as part of
the context. Examples (EX) is the feature that mines similar
examples from the project under test to enable few-shot
learning. Dynamic Repair (DR) is the feature responsible for
using the output of failing test runs (e.g., the exception raised,
error message when available, etc.) to guide the LLM towards
oracles that result in passing runs. Static Repair (SR) is the
feature that attempts to statically repair oracles that fail to
compile. We observed that the LLM often generates assertions
with method calls missing the identifier of the target object.
This feature uses the error message of the failing run and a
simple type analysis to locate type-consistent identifiers for
fixing the broken assertion.

B. The CHATASSERT pseudocode

Algorithm 1 shows the pseudocode of CHATASSERT. It
takes as input the test metadata md and a set of configuration
options, including the number of candidate oracles to generate,
NO . CHATASSERT produces on output a set of candidate
oracles, OS . The test metadata md includes the elements
considered in prior work to characterize a test object [1], [4],
[5], [37]: the test setup method, if exists, and the test prefix,
including the test name.

Line 11 summarizes test-related code and stores the results
in the variable summaries . Section IV-C details function
SUMMARIZE. Line 12 creates an initial prompt based on the
obtained summary, the test metadata, and the focal method of
the test [1], and stores the prompt on variable prompt .

LLM

EX

CS

compile
?

run
?

SR

DR

oracle

Y

Y

N

N

generation repair

Fig. 3: CHATASSERT.

CHATASSERT uses a prompt
encoding the following data
items: t(1) the task definition,
(2) code summaries, (3) global
history, and (4) local history. The
function INITIAL PROMPT creates a
prompt object and defines the first
two fields, task definition, and code
summaries, which are final. As a
reference, the text under P1.1–P1.3
on Figure 2b shows values for these
two fields. The global history field is
a list that records observations that
CHATASSERT makes about oracles
already generated and tested and
helps to guide CHATGPT towards
solutions (e.g., “avoid oracle $oracle”
as it has already been generated).
Finally, the local history is a list
storing temporary information related to a specific oracle.

The outer loop defined on lines 13–35 iteratively generates
candidate oracles until reaching the target number, NO , or the
global limit of queries to CHATGPT (NT ). Before starting
a new iteration of that loop, CHATASSERT calls a method
in the prompt object to clear the local history (line 14).
Information in the global history is retained across iterations
of the outer loop whereas the local history is always cleared
at the beginning of a local search (lines 16–35). Intuitively,
the generation mode of CHATASSERT corresponds to the first
iteration of this loop (lines 16–35). The repair mode corre-
sponds to the remaining iterations, which attempt to repair
the oracle produced in the first iteration. The inner loop starts
by querying the model (line 17), extracting the oracle from
the output (line 18), and rewriting the original test case with
that oracle (line 19). The block on lines 20-27 is responsible
for repairing the code that fails to compile. We empirically
observed that the most common reason for that problem
is missing identifiers. For example, CHATGPT generates a
method call expression without indicating the target object of
that call. To deal with that problem, CHATASSERT (1) uses the
compilation error message to find what identifier is missing,
(2) uses a lightweight static analysis to find what classes, from
those instantiated in the test body, declare the identifier, and (3)
checks if pre-pending the expression with a matching id will
make the test to compile. The loop in lines 22-24 indicates that
multiple identifiers can be found in this process; the function
call FUZZ abstracts the steps above. As the repair process
above focuses on one case of compilation issue, we use the
LLM itself as a fallback. After RT unsuccessful attempts,
if CHATASSERT still cannot find an oracle that makes the
test compile, it adds the compilation error message in the
local history (e.g., “the oracle $oracle fails to compile”) and
continues to another iteration of the inner loop. The local
history is part of the prompt; conceptually, it makes CHATGPT
avoid generating the oracle that variable ora stores again.

The test referred to by variable t at line 28 must compile if
execution reaches that location. In that case, variable tresult
stores the results of the test run. If the test passes (line
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TABLE I: Description of CHATASSERT’s features.

ID Name Description

CS Code Summ. CHATASSERT incorporates summaries of the methods used in the test prefix into the prompt.
EX EXamples CHATASSERT incorporates similar examples (e.g., another test from the same test file) into the prompt.
DR Dynamic Repair CHATASSERT uses dynamic information from test runs to assist the LLM repair failing assertions. It mines the error messages

from test outputs and updates the prompt accordingly (e.g., ”expected x but observed y. Can you fix the assertion?”).
SR Static Repair CHATASSERT uses compilation error messages and type information to assist the LLM repair assertions that do not compile. For

example, it looks for class definition that declare a method with an expected signature.

Algorithm 1. The CHATASSERT algorithm.
Input: The test metadata md (e.g., test prefix), the number
of candidate oracles to generate NO , the local and global
maximum number of LLM trials, respectively, LT and NT , and
the maximum number of repair trials RT .
Output: A set of candidate oracles OS .

1. let
2. def summarize(): ... # asks llm to summ. test-related code
3. def initial prompt(): ... # creates initial prompt
4. def focal(): ... # mines focal method
5. def extract ora(): ... # extracts oracle from model output
6. def rewrite test(): ... # rewrites test case with new oracle
7. def compile(): ... # compiles the test case
8. def run(): ... # runs the test case
9. in
10. OS = set()
11. summaries = summarize(md )
12. prompt = initial prompt(summaries , md , focal(md ))
13. while NO > 0 and NT - - > 0:
14. prompt .clear local history()
15. lt = LT # reset counter lt , focusing on one oracle
16. while lt- - > 0:
17. out = prompt .query() # query the model
18. ora = extract ora(out) # extract oracle from text
19. t = rewrite test(md , ora)
20. if not compile(t):
21. rt = RT
22. while rt- - > 0:
23. ora = fuzz(md , ora) # e.g., add missing ids
24. if compile(t = rewrite test(md , ora)) break
25. if rt == −1: # ora still fails to compile
26. prompt .notify compile error(”local”, ora)
27. continue
28. tresult = run(t)
29. if tresult .success:
30. NO- - # found one! it compiles and runs
31. OS .add(ora)
32. prompt .notify successful gen(”global”, ora)
33. break
34. else:
35. prompt .notify failing ora(”local”, ora , tresult)
36. return OS

29), CHATASSERT decrements variable NO denoting the total
number of assertions that remain to be generated, adds the
assertion to the results set, and updates the global history to
indicate that this is an executable oracle that should not be
generated again and break the inner loop. If the test fails
(line 35), we update the local history to indicate that the
current oracle (ora) fails to run and should be avoided. The
method NOTIFY FAILING ORA extracts the error message (e.g.,
“expected x found y”) from the test results variable (tresult)
and adds it to local history, which is subsequently used in the
prompt of the following iteration of the inner loop.
Mapping of features. The algorithm focuses on the feedback
loop of CHATASSERT, as reflected through the notify*

method calls. Feature CS maps to line 11, feature EX is en-
capsulated in the initial_prompt called at line 12, feature
DR maps to line 35, and feature SR maps to lines 21–24.

C. Code Summarization (CS)

We detail the code summarization feature in the following.
An LLM has no prior knowledge about the semantics of
the program under analysis. Conceptually, the CS feature is
responsible for obtaining an approximation of the intent of
the test prefix to facilitate the oracle generation task. To
that end, CHATASSERT proceeds as follows for each method
call or instantiation expression it encounters in the input test
prefix. First, CHATASSERT locates the class c that declares a
given function f —associated with the corresponding method
or constructor— using a static type analysis based on the
JavaSymbolSolver module [38] of the JavaParser [39] toolset.
Second, CHATASSERT considers the following cases: (1) if c
is not an application class, CHATASSERT indicates so in the
prompt. it does not query the LLM; (2) if f is a method,
CHATASSERT builds a prompt with the method signature and
body and asks the LLM to summarize the method; (3) if f is
a constructor, CHATASSERT builds a prompt with the entire
class body and asks the LLM to summarize the class.

Figure 4 illustrates the code summarization feature for the
test input sequence from Figure 2a. CHATASSERT identifies
an object instantiation at line 3 (ODocument instantiation)
and requests CHATGPT to provide a summary of the entire
class. In the case of a method call expression at line 4
(ORecordInternal.unsetDirty()), it requests CHATGPT
to summarize the method. We empirically observed that the
choice between requesting a summary of class versus a
summary of methods provides a good balance between space
efficiency as per the number of tokens required to express
method or class— and quality of results. Figure 4 shows the
conversation between CHATASSERT, represented as “P”, and
the LLM, represented as “A”. Note that each summary request
is done separately, in a different query.

After all method call expressions are processed using the
method above, the corresponding code summaries are con-
joined and added to the prompt as part of the context. It is
worth noting that such a task pipeline (i.e., using the answer
of code summarization to help oracle generation) is akin to
the “chain of thought” prompt design [17], [18], which is
highly useful for a variety of tasks. In both cases the LLM is
queried in two stages: the first stage is responsible for building
background knowledge to help answer the task; the second
stage is responsible for answering the task.
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P1 I will ask you to explain a few methods and classes. I
will also walk you through the steps of a Java test
method prefix and ask you about updates to each
variable.

A1. Yes, I will try to understand and describe the method,
classes and variable assignments that you provide.

P2 Line 3 instantiates an object of class ODocument. Can
you explain what that class does? Here is the code:

‘‘‘
class ODocument implements ... {
public static final byte RECORD_TYPE = ’d’;...
public ODocument() {
setup(ODatabaseRecordThreadLocal.instance().
getIfDefined());

} ...
@Override
public Optional<OVertex> asVertex() {
if (this instanceof OVertex)

return Optional.of((OVertex) this);
OClass type = this.getImmutableSchemaClass();
if (type == null)

return Optional.empty();
if (type.isVertexType())

return Optional.of(new OVertexDelegate(this));
return Optional.empty();

} ... <other methods>
}
‘‘‘

A2. The class ODocument is some form of an associative
database. It contains multiple flag variables like
trackChanges, ordered, lazyLoad etc. to control how a
document will be handled. ODocument has multiple
overloaded constructors which enable various ways of
instantiating a documents container...

P3 In line 4, method unsetDirty from class ORecordInternal
is invoked. Can you explain that method? Here is the
code:

‘‘‘
public static void unsetDirty(final ORecord record) {
final ORecordAbstract rec = (ORecordAbstract) record;
rec.unsetDirty();

}
‘‘‘

A3. The purpose of method ‘unsetDirty()‘ is to clear or
unset the dirty status of a record. In databases, a
record is considered dirty if it has been modified or
updated since it was last saved or synchronized with
the database. By calling ‘unsetDirty()‘, the record is
marked as not dirty anymore. ...

Fig. 4: Example of Code Summarization.

D. Examples (EX)

The EX feature is responsible for selecting examples and
incorporating them into the prompt as context. For that,
CHATASSERT uses the pre-trained UniXCoder, which has
shown good performance over its predecessors for code search
and clone detection [40]. More precisely, we compare the
cosine similarity score between the vector embeddings of the
test method that we want to generate the oracle to –i.e., the
target test method– and the other methods declared in the same
test file. We select only test methods as examples for which the
cosine similarity score was high. After checking with multiple
thresholds, we find a cosine similarity threshold of > 0.6
to perform well. According to Reynolds and McDonell [34],
both zero-shot and few-shot prompting outperformed one-shot
prompting since one-shot prompting tends to contaminate the
prompt semantics. Therefore, we only include examples if we
can find more than one reference test method with cosine
similarity scores above the threshold.

E. Static Repair (SR) and Dynamic Repair (DR)

The SR feature is responsible for repairing an assertion
that fails to compile. CHATASSERT focuses on compilation
errors caused by undeclared identifiers, which we find to be
the most prevalent error in oracles generated with LLMs. If
the symbol that provoked the compilation error is a variable,
we replace all instances of the variable with the placeholder
<insert>. Then we carry out a fuzzing-based infilling by
replacing <insert> with different identifiers from the test
prefix. If the symbol is a method name, we add a prefix hole
<insert>.m(...) and carry out a fuzzing-based infilling with
identifiers of non-primitive type that are consistent with m.
CHATASSERT checks whether the assert statement compiles
after each infilling trial and it halts the repair process if the
code compiles or after RT trials.

As recent LLM-based repair techniques [36], [41], [42],
CHATASSERT leverages dynamic information for assertion
repair. More precisely, the DR feature is responsible for re-
pairing an assertion that successfully compiles but fails during
execution. For that, CHATASSERT processes the error message
obtained from the failure, i.e., from the run of the test with
the invalid assertion. Then, it revises the prompt by incorpo-
rating the error message in the prompt. CHATASSERT asks
CHATGPT to revise the assert statement by circumventing
the failure. CHATASSERT attempts to repair an oracle for LT
times (Lines 15–35 from Algorithm 1.)

It is worth noting that CHATASSERT, when configured with
the DR feature, assumes that the program is bug-free, i.e., that
the test has failed because of a buggy assertion and not because
of a buggy code. However, note that CHATASSERT makes no
observations on the state as techniques for regression oracle
generation do [43], [44], so the possibility of over-constraining
behavior is diminished. The rationale for CHATASSERT pro-
viding the DR feature is twofold: (1) when the developer is
writing test code she certainly expects the assertion to pass
and (2) the error messages from test failures are a rich source
of information to guide repair.

V. EVALUATION

We pose the following research questions:

• RQ1: How effective is an LLM for test oracle generation?
• RQ2: Does using CHATASSERT’s prompt engineering

improve the oracle generation capabilities of LLMs?
• RQ3: How does CHATASSERT compare with prior work

on oracle generation?
• RQ4: What is the impact of each of CHATASSERT’s

features on its performance?
The first question evaluates how promising CHATGPT—

which has shown effectiveness in solving various Software
Engineering tasks [12], [26], [45]— can be for the task of
generating test oracles. The second question measures the
impact and generality of the prompt engineering mechanism
that CHATASSERT proposes. The third question compares
CHATASSERT against recent prior work. The fourth ques-
tion evaluates the influence of each of CHATASSERT’s fea-
tures on its performance. Finally, the fifth question compares
CHATASSERT-DR against the SoTA technique TECO in detail.
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A. Experimental Setup

We have used JavaParser [39] and JavaSymbolSolver [38]
to statically analyze code when building static context for
queries to the LLM. For the few-shot examples feature (EX),
we have used the UniXCoder [40] model with a cosine
similarity threshold of 0.6. We elaborate further on the dataset,
experimental setup, and comparison baselines in the following.

1) Normalization: To facilitate the identification of ex-
act matches, we make semantic-preserving transformations
on some assertion commands under the assumption that
their arguments are side-effect-free. For example, we con-
sider assertEquals(a,b) and assertEquals(b, a) to be
equivalent. We also remove the optional message and delta

arguments from assert statements for similar reasons.

2) Metrics: As in prior work, we use Acc@k and NLP
metrics for comparison (Section II-B). In addition, we also
use mutation scores to evaluate the bug-finding ability of the
generated oracles. Considering ranking metrics (Acc@k), note
that we configure CHATGPT to generate k oracles. Recall that
CHATASSERT does not rank oracles (Section IV-A).

3) Dataset: We evaluate CHATASSERT on a part of the
evaluation set of the TECO dataset [5]. To reduce runtime
and financial costs associated with running CHATGPT on
various CHATASSERT configurations and projects, we run our
experiments on a sample of the TECO dataset. We randomly
sample 500 distinct samples from a total of 3,540 examples
in the TECO dataset for a 98% confidence level and 5% error
margin. There are a total of 51 projects in the test set. So, the
first step is to select 10 random samples per project (≈500
examples over 51 projects). For projects with less than 10
examples, we select all the examples from that project. For
projects with more than 10 examples, we randomly sample 10
samples. After executing this procedure, if we cannot reach
the count of 500 samples, we randomly sample from the set
of remaining examples again to reach the 500 sample count.
To mitigate confounding effects, throughout the sampling
process, we eliminate examples that include Hamcrest’s [46]
assertThat construct and assertions that use helper methods.

4) Comparison Baselines: We group the comparison base-
lines according to their purpose:

LLM variants (used in RQ2). To evaluate the generality
and impact of CHATASSERT’s prompt engineering mechanism,
we configure the oracle generation procedure with popu-
lar LLMs, namely CHATGPT [14], Mistral [21], Codestral
[22], and Magicoder [23]. We chose CHATGPT because it
is one of the leading large language models, particularly
noted for its advanced capabilities achieved through techniques
like Reinforcement Learning from Human Feedback (RLHF)
which improves the model’s performance in chat contexts
by learning from interactions with humans [47]. We chose
Mistral because it is a general-purpose LLM that has proven
superior to Llama 2 13B on various benchmarks [21]. We
selected Codestral because it is a larger model specifically
optimized for coding tasks, demonstrating better performance
on benchmarks such as HumanEval compared to Llama 3
70B, and supporting a wide range of programming languages

TABLE II: Comparison of TECO and CHATGPT-ONE. Higher values indicate
better performance.

Model Acc@1 BLEU CodeBLEU ROUGE EditSim

TECO 0.09 0.85 0.40 0.72 0.55
CHATGPT-ONE 0.10 0.77 0.24 0.36 0.46

Given the setup code <SETUP>, test prefix <TEST>,
and focal method <FOCAL>, generate one org.junit.
Assert statement:
<SETUP>:...\n<TEST>:...\n<FOCAL>:...

Fig. 5: CHATGPT-ONE prompt template.

with high accuracy [22]. Magicoder was chosen for its robust
capabilities in generating high-quality instruction data which
benefits from its foundation on another LLM, DeepSeek-
Coder, which has proven to perform well against larger models
such as CodeLlama-34B [48]. Additionally, Magicoder uses
an innovative approach called OSS-Instruct, which uses open-
source code references to enhance performance [23].

Prior work (used in RQ3). We compare CHATASSERT
with three baseline models from prior work, namely AT-
LAS [1], TOGA [4], and TECO [5]. ATLAS trains a Seq2seq
model [49] for assertion oracle generation. TOGA uses a
grammar to generate candidate test oracles which are later
ranked using a fine-tuned CodeBERT model [4], [50]. The
TECO model is obtained by fine-tuning a CODE-T5 [37] model
on both syntax level data and runtime semantics.

B. Answering RQ1: How effective is an LLM for test oracle
generation?

To answer this question, we select CHATGPT platform’s
popular GPT3.5 model as the representative LLM because it
offers a convenient API to quickly and easily set up feasibility
experimentation. We evaluate whether CHATGPT, configured
with a simplistic prompt, can generate oracles with accuracy
that is comparable to that of the SoTA.

This research question compares the state-of-the-art tech-
nique TECO with CHATGPT-ONE, a technique obtained by us-
ing CHATGPT with a simplistic prompt, joining four elements:
(1) a natural language description of the task, (2) the test setup
code, (3) the test prefix code, and (4) the name of the focal
method. Figure 5 shows the prompt template that CHATGPT-
ONE uses. CHATGPT-ONE is powered by the GPT3.5 LLM
and queries the model using the default temperature. The
“ONE” in the name CHATGPT-ONE signifies that CHATGPT-
ONE asks CHATGPT for only one assert statement for each
test method.

We run TECO and CHATGPT-ONE on the TECO dataset,
including 3,540 tests, and evaluate their performance using
the metrics listed in §V-A1. We use k = 1 for Acc@k as
CHATGPT-ONE is asked to generate only one assert statement
for a given test method. Table II shows results comparing
TECO and CHATGPT-ONE.
Summary: Despite the absolute low marks of both techniques
in Acc@1 and the higher marks of the SoTA in most NLP
metrics, results show that CHATGPT-ONE is competitive with
the SoTA considering Acc@1 (1ppt difference). We conclude
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TABLE III: Comparison of CHATGPT and CHATASSERT. Higher values indicate better performance.

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim

CHATGPT [14] 0.05 0.12 0.18 0.28 0.79 0.31 0.39 0.48
MISTRAL-7B [21] 0.18 0.21 0.22 0.22 0.63 0.29 0.51 0.54
MAGICODER-6.7B [23] 0.06 0.07 0.07 0.07 0.50 0.21 0.44 0.45
CODESTRAL-22B [22] 0.22 0.27 0.28 0.28 0.67 0.30 0.55 0.55

CHATASSERT-CHATGPT 0.45 0.51 0.53 0.54 0.85 0.35 0.52 0.55
CHATASSERT-MISTRAL 0.30 0.32 0.32 0.32 0.70 0.32 0.57 0.57
CHATASSERT-MAGICODER 0.23 0.25 0.25 0.25 0.66 0.32 0.54 0.57
CHATASSERT-CODESTRAL 0.33 0.35 0.35 0.35 0.74 0.38 0.62 0.62

that LLMs show promise for improving neural-based oracle
generation techniques.

C. Answering RQ2: Does using CHATASSERT’s prompt engi-
neering improve the oracle generation capabilities of LLMs?

The purpose of this question is to validate whether the
prompt engineering mechanism of CHATASSERT improves the
performance of LLMs for oracle generation.

Table III shows the results of all baselines and metrics.
We consider four LLMs as our baselines; one closed-source
(CHATGPT) and three open-source (MISTRAL, MAGICODER,
and CODESTRAL). These baselines also use a simplistic
prompt similar to CHATGPT-ONE (§V-B) with the exception
of asking for TEN assert statements instead of ONE for each
test method. We evaluated these baselines on 500 randomly-
selected sample (§V-A3) from the TECO evaluation dataset. In
contrast, CHATGPT-ONE was evaluated on the entire 3,540
samples from TECO’s evaluation dataset. This justifies the
0.05ppt performance difference between CHATGPT-ONE and
CHATGPT at Acc@1. It came as a surprise that CODESTRAL,
an open-source model, performed significantly better than
CHATGPT in Acc@1, Acc@3 and Acc@5 and achieved a
similar score to CHATGPT’s in Acc@10. It is worth not-
ing that recent work [22], [51] reports similarly impressive
results showing that CODESTRAL achieves a HumanEval
score of 81% compared to 72% of CHATGPT [52]. The
techniques below the dashed line correspond to the variants of
CHATASSERT, configured with the baseline LLMs that appear
above the dashed line.

The results indicate that CHATASSERT consistently im-
proves the performance of all four LLMs for test oracle
generation. For instance, CHATASSERT-CHATGPT achieves
an Acc@1 of 0.45 whereas CHATGPT only reaches 0.05.
CHATASSERT-CHATGPT consistently demonstrates better
performance in higher-ranked accuracies (Acc@3, Acc@5,
Acc@10), showing that the prompt engineering features of
CHATASSERT effectively enhance the LLM’s ability to gen-
erate exact match oracles. When comparing Acc@10 be-
tween CHATGPT and CHATASSERT-CHATGPT, the Chi-
Square value is 66.76 with a p-value of 3.04×10−16, indicat-
ing a statistically significant improvement of CHATASSERT-
CHATGPT over CHATGPT with a large effect size (Cohen’s
h 1.3). Likewise, the impact of CHATASSERT on the perfor-
mance of open-source LLMs is also significant. For instance,
compared to MISTRAL, CHATASSERT-MISTRAL shows an
average increase in accuracy of 10%.

Despite the impressive performance of CODESTRAL to
generate oracles with simplistic prompts compared to CHAT-
GPT, CHATASSERT-CHATGPT outperformed CHATASSERT-
CODESTRAL in more than 10ppt across all accuracy levels.
We have observed that CHATGPT responds very well to
the summarization (CS) and dynamic repair (DR) features
of the prompt compared to CODESTRAL which explains
why CHATASSERT-CHATGPT outperforms CHATASSERT-
CODESTRAL.
Summary: Results indicate that CHATASSERT’s prompt engi-
neering significantly improves accuracy and NLP metrics for
all tested LLMs.

D. Answering RQ3: How does CHATASSERT compare with
prior work on oracle generation?

This research question evaluates the performance of
CHATASSERT in comparison to prior work. For this research
question, we consider the version of CHATASSERT that per-
formed best in RQ2, i.e., the one configured with CHATGPT.
As comparison baselines, we use the techniques listed in
Section V-A4. Table IV shows the results of the techniques for
various accuracy and NLP metrics. Rows above the dashed line
correspond to the baseline techniques. The last row shows the
results of CHATASSERT (same as in CHATASSERT-CHATGPT
from Table III).

Overall, results show that the Acc@k and NLP scores of
CHATASSERT are consistently higher compared to prior work.
It is worth noting that ATLAS exhibits a notably low accuracy
score. This can be attributed to ATLAS being an earlier model
that uses an RNN encoder-decoder, which may not capture
the same level of complexity as more recent models [1].
TOGA improves over ATLAS because of its grammar-based
oracle generation but still does poorly because of the restrictive
nature of its grammar and its requirement of an assertion
approximation [4], [53]. Hossain et al. similarly reports that
TOGA was able to generate an assertion in only 32% of the
cases and among the assertions it generated, more than 50%
were inaccurate [54].

TECO on the other hand improves over TOGA by including
six types of code semantics with their neural model to generate
assert statements. However, because of this restrictive set of six
semantics TECO fails to generate the accurate assert statement
in many cases [5]. CHATASSERT outperforms all the prior
work by using more inclusive code summaries and examples to
generate an oracle and then statically and dynamically repairs
the generated oracles with the help of CHATGPT.
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TABLE IV: Comparison of CHATASSERT against the baselines ATLAS, TOGA, and TECO. Higher values indicate better performance.

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim

ATLAS [1] 0.00 0.00 0.001 0.001 0.25 0.12 0.34 0.28
TOGA [4] 0.09 0.09 0.14 0.15 0.33 0.27 0.39 0.41
TECO [5] 0.30 0.38 0.41 0.42 0.81 0.31 0.47 0.55

CHATASSERT 0.45 0.51 0.53 0.54 0.85 0.35 0.52 0.55

TABLE V: Comparison of CHATASSERT-DR against TECO (the SoTA). Higher values indicate better performance.

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim

TECO [5] 0.30 0.38 0.41 0.42 0.81 0.31 0.47 0.55
CHATASSERT - DR 0.35 0.41 0.44 0.47 0.81 0.28 0.47 0.49

Given the relative strength of TECO in comparison to
ATLAS and TOGA, we decided to conduct a detailed compar-
ison between CHATASSERT and TECO considering (1) exact
matches and (2) non-exact matches. For exact matches, we
measure the number of exact matches that each technique
generates, analyzing the overlap and exclusivity between the
oracles generated by both methods. For non-exact matches,
we measure the ability of generated oracles to kill mutants
through mutation analysis.

Considering the exact matches, the Venn diagram from
Figure 6a shows the fraction of the ground truth that each
technique generates. The diagram shows that no technique
subsumes the other, that CHATASSERT covers 22.4% of the
oracles distinctly whereas TECO covers 10.8% of the oracles
distinctly, and that the combination of the techniques cov-
ers 64.4% of the ground truth. When comparing Acc@10
of CHATASSERT and TECO, the Chi-Square value is 13.02
with a p-value of 0.0003, indicating a statistically significant
difference with a medium effect size (Cohen’s h 0.58).

It is worth noting that a generated oracle can be useful even
if it is not an exact match. Although the NLP metrics provide
a rough estimate for those cases, (1) they are inaccurate [55]
and (2) TECO and CHATASSERT show similar results for those
metrics. As a proxy to measure the bug detection capabilities
of non-exact match oracles and hence their quality, we carry
out a mutation analysis to find out how many mutants are
killed by these oracles. We use the PIT Mutation Test tool [56]
for that. We used the default mutation operators from the
tool. Because mutation testing is expensive, we configured
PIT to generate a maximum of 21 mutations per class when
evaluating both TECO and CHATASSERT. We used a timeout
factor of 1 which helps to overcome infinite loops. Other
than that, we have not used any time constraints. Figure 6b
shows the distribution of mutation strength associated with
the oracles that CHATASSERT and TECO generate. Results
show that the mutation strength of the tests augmented with
CHATASSERT’s oracles is significantly higher (p-value< 0.05)
than those augmented with TECO’s oracles, with a medium
effect size (Cliff’s Delta 0.51).

Comparing TECO with CHATASSERT-DR. This research
question evaluates how TECO compares against CHATASSERT
without dynamic repair, i.e., CHATASSERT-DR. The rationale
is that TECO does not dynamically repair test oracles.

Table V compares the various accuracy and NLP metrics be-
tween CHATASSERT-DR and TECO. Considering Acc@k, the
numbers show a consistent improvement of CHATASSERT-DR

(a) Venn diagram showing differences and commonalities of exact match
oracles generated by CHATASSERT and TECO. The numbers inside the
partitions represent fractions of the ground truth.

(b) Violin plot showing mutation strength of non-exact match oracles
generated by CHATASSERT and TECO.

Fig. 6: Comparison between CHATASSERT and TECO on oracles that are exact
matches (6a) and oracles that are non-exact matches (6b).

for all values of k. For example, the Acc@1 of CHATASSERT-
DR is 5% higher compared to that of TECO. The differ-
ence decreases for higher values of k, but the accuracy of
CHATASSERT-DR is still 5% higher than that of TECO at
k = 10 (47% and 42%, respectively). Notably, TECO was
able to produce slightly more syntactically similar oracles
compared to CHATASSERT-DR based on the NLP metrics.
Curiously, we found that NLP metrics can be unreliable when
measuring a technique’s ability to generate effective oracles
[55]. We also carry out an in-depth comparison between
CHATASSERT-DR and TECO on exact and non-exact matches.

Considering exact matches, the Venn diagram from Fig-
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(a) Venn diagram showing differences and commonalities of exact match
oracles generated by CHATASSERT-DR and TECO. The numbers inside the
partitions represent fractions of the ground truth.

(b) Violin plot showing mutation strength of non-exact match oracles
generated by CHATASSERT-DR and TECO.

Fig. 7: Comparison between CHATASSERT-DR and TECO on oracles that are
exact matches (7a) and oracles that are non-exact matches (7b).

ure 7a shows the fraction of the ground truth that each
technique generates. Since TECO generates 10 assertions per
test sample, we retrieve 10 assertions with CHATASSERT-DR,
as for measuring Acc@10. The diagram shows that no tech-
nique subsumes the other, that CHATASSERT-DR discovers
19.6% of the oracles distinctly while TECO discovers 14.6%
of the oracles distinctly. Combined, the techniques generate
61.4% of the oracles from the ground truth set. Consider-
ing non-exact matches, Figure 7b shows the distribution of
mutation strength of the oracles generated by the techniques.
Notice that the strength associated with CHATASSERT-DR
is mostly concentrated between 70-100% compared to 0-
20% for the oracles that TECO generates. We conjecture that
CHATASSERT-DR produces more effective oracles compared
to TECO because CHATASSERT-DR kills significantly more
mutants (p-value< 0.05) compared to TECO with a small effect
size (Cliff’s Delta 0.38).

Summary: CHATASSERT outperforms prior techniques. Com-
pared to the SoTA technique, TECO, CHATASSERT achieves
15% higher and CHATASSERT-DR achieves 5% higher
Acc@1 scores respectively. Additionally, oracles generated
by both CHATASSERT and CHATASSERT-DR demonstrate
significantly higher mutation strength than TECO.

E. Answering RQ4: What is the impact of each of
CHATASSERT’s features on its performance?

The purpose of this research question is to evaluate
the contribution of each of the features from Table I on
CHATASSERT’s performance.

Table VI reports the results of this ablation study, where
we run CHATASSERT with each of its four features removed.
(CHATASSERT’s implementation provides feature flags for
that.) Rows CHATASSERT-x show these configurations, where x
refers to the abbreviation of the feature as appearing on column
“ID” from Table I. For reference, the last row shows the results
of CHATASSERT with all features enabled. The table lists these
“remove-one” configurations in decreasing order of Acc@10.
We chose to sort by Acc@10 because it is more inclusive
compared to the other ranking levels.

The results show that the impact of feature EX was
slightly less than the other features of CHATASSERT. Notably
CHATASSERT found few shot examples for only 45% of the
samples. Disabling that feature reduces Acc@10 by 6%. We
observe that the CS, SR, and DR features had similar and
relatively higher impacts, with their removal resulting in an
average 7% loss in Acc@10. A similar drop in accuracy
for these different features suggests that multiple features
contribute to the generation of a common set of accurate ora-
cles. Considering Acc@1, we found the Code Summarization
(CS) feature to be the most impactful with a drop of 11%
points when the feature CS is not used. Removing any of the
features results in a negative impact, indicating that all features
contribute positively to CHATASSERT’s overall performance.
Summary: Results indicate that all features of CHATASSERT
are relevant and that one accurate oracle can be generated
with the help of multiple prompting features of CHATASSERT.

VI. DISCUSSION

This section discusses positive and negative examples for
CHATASSERT, lessons and implications, and threats to validity.

A. Examples

The Venn diagram from Figure 6a shows that important
sets of assertions are generated exclusively by CHATASSERT
or TECO. This section discusses a small selection of cases
where we find CHATASSERT to perform particularly well
when compared to TECO (positive cases) and cases where the
contrary happens (negative cases).

Figure 8 shows two positive test cases, i.e., cases
CHATASSERT was able to generate the oracle matching the
ground truth (exact match), but TECO was unable to generate
the oracle. In the first example test case, toLinkedHashSet,
we find that the file containing the test method also con-
tains two other similar test methods which CHATASSERT
uses as few shot examples (EX feature). CHATASSERT had
initially left out the identifier Collectors in the assert
statement. With the help of the static repair feature (SR),
CHATASSERT was able to prepend Collectors to the method
call toLinkedHashSet(). The combinations CHATASSERT-
CS and CHATASSERT- DR, which incorporate both features
EX and SR, were able to produce the expected oracle. In
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TABLE VI: Ablation study. CHATASSERT - x represents the version of CHATASSERT without feature x. For rows above the dashed line, the lower the value,
the higher the impact of the corresponding feature. For the row below dashed line, higher values indicate better performance.

Model Acc@1 Acc@3 Acc@5 Acc@10 BLEU CodeBLEU ROUGE EditSim

CHATASSERT - EX 0.37 0.45 0.47 0.48 0.83 0.32 0.50 0.53
CHATASSERT - CS 0.34 0.43 0.45 0.47 0.82 0.30 0.47 0.50
CHATASSERT - SR 0.36 0.42 0.44 0.47 0.82 0.29 0.48 0.50
CHATASSERT - DR 0.35 0.41 0.44 0.47 0.81 0.28 0.47 0.49

CHATASSERT 0.45 0.51 0.53 0.54 0.85 0.35 0.52 0.55

/* From project: gvlasov/collections-utils [57] */
@Test public void toLinkedHashSet() {
final LinkedHashSet<Integer> expected = new

LinkedHashSet<>();
expected.add(1); expected.add(2); expected.add(3);
Assert.assertEquals(expected, Arrays.asList(1, 2, 3).

stream()
.collect(Collectors.toLinkedHashSet())); /* <== */ }

/* From project: arnohaase/a-foundation [58] */
@Test public void testFlatten() {
final Set<Set<String>> set = new HashSet<>();
set.add(new HashSet<>(Arrays.asList("a", "b")));
set.add(new HashSet<>(Arrays.asList("b", "c", "d")));
final Collection<String> flattened
= ACollectionHelper.flatten(set);

assertEquals(5, flattened.size()); /* <== */ }

Fig. 8: Positive Examples: Only CHATASSERT succeeded in generating the
ground truth assertion.

the second example test case, testFlatten, we observe that
the code summarization and the dynamic repair features were
essential to producing the oracle. When we analyzed the data
from the ablation study, we observed that CHATASSERT could
not predict the expression flattened.size() when we
removed the code summarization feature (CS). Likewise, we
observe that CHATASSERT was unable to predict the correct
value of the expression flattened.size() (i.e., the value
5) when we removed the dynamic repair feature (DR). The
combinations CHATASSERT- EX and CHATASSERT- SR, which
incorporate both features CS and DR, were able to produce
the expected oracle.

Figures 9a highlights two negative examples, i.e.,
cases where CHATASSERT failed to generate oracles
but, TECO can generate the oracles. For the case
of testGroupByCustomEquality, when the test
prefix contains anonymous inner classes, CHATASSERT
is unable to predict the correct assertion. For the
test testIntObjectMap, CHATASSERT can generate
assertEquals(11,(int)test.get(24)); which is
executable and similar to but it is not an exact match of
the ground truth oracle. Note this is not a limitation of the
technique, it is an inherent limitation of the evaluation metrics
used in the literature.

Figure 9b shows examples where neither CHATASSERT
nor TECO can generate the correct assertion. For the test
testFilter, we observe the presence of the anonymous
inner class (a subtype of APredicateNoThrow<String>)
in the test prefix, suggesting that neural models of TECO or
CHATGPT struggle with this kind of programming construct.
For the test testMkStringFull, we observe that the test
prefix does not contain any statements that could help in the
process of generating the correct oracle.

/* From project: arnohaase/a-foundation [58] */
@Test public void testGroupByCustomEquality() {
final AEquality equality = new AEquality() {
@Override public boolean equals(...){...}
@Override public int hashCode(...) {...} };
final AFunction1NoThrow<String, Integer> len
= new AFunction1NoThrow<String, Integer>() {
@Override public Integer apply(String param) {...} };

final Map<AEqualsWrapper<Integer>,List<String>> grouped=
ACollectionHelper.groupBy(
Arrays.asList("a", "bc", "d", "efg", "hi", "j"),
len, equality);

assertEquals(2, grouped.size()); /* <== */ }

/* From project: jcodec/jcodec [59] */
@Test public void testIntObjectMap() {
IntObjectMap<Integer> test= new IntObjectMap<Integer>();
test.put(24, 11);
assertEquals(Integer.valueOf(11), test.get(24));/*<==*/}

(a) CHATASSERT failed to generate the ground truth assertion.

/* From project: arnohaase/a-foundation [58] */
@Test public void testFilter() {
final APredicateNoThrow<String> len1

= new APredicateNoThrow<String>() {
@Override public boolean apply(String o) {...} };

assertEquals(Arrays.<String>asList(),
ACollectionHelper.filter(
Arrays.<String>asList(), len1)); /*<==*/ }

/* From project: arnohaase/a-foundation [58] */
@Test public void testMkStringFull() {
assertEquals("[]", ACollectionHelper.mkString(

Arrays.asList(),"[","#","]")); /* <== */ }

(b) Both CHATASSERT and TECO failed to generate the ground truth assertion.

Fig. 9: Negative Examples

B. Lessons and Implications

1) Complementary nature of approaches: Figure 6a shows
that TECO and CHATASSERT complement each other. Indeed,
the union of both techniques would have an Acc@10 score
of 64%, which is remarkably higher than any previous oracle
generator [5]. This observation calls for work that combines
multiple oracle generation techniques, ranking their combined
results or using their inputs as seeds for fuzzing [7].

2) Iterative feedback is important but costly: We observe
that iterative feedback has a progressively increasing positive
impact on CHATASSERT’s performance (§V-D) at higher val-
ues of k (Table IV). CHATASSERT incorporates sensible infor-
mation throughout its execution to dynamically build context
to CHATGPT. This is reflected in the notify* methods on
the prompt object from Algorithm 1. Making multiple calls
to CHATGPT is relatively expensive. For instance, currently,
it takes ∼10m, on average, for CHATASSERT to generate
an assertion. One of the reasons for such high costs is the
instability of the API service. For example, CHATGPT users
found that accessing the service through the API is often
slower when compared to accessing the service through the
web interface. One of the users recently reported that using a
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new user identifier as part of the request body can result in
significant speed-ups during API access [60]. Another reason
for the high cost relates to the high usage of a closed-
source LLM (in our case, CHATGPT). These results call for
action to offload subtasks to local servers running open-source
LLMs. For example, it is possible to offload the repair task
to a local infill LLM [61]. More precisely, the repair task
would replace some identifiers in the oracles that CHATGPT
produces with masks and request an infill LLM (e.g., In-
coder [24]) to replace those masks with alternative identifiers.
Considering those aspects, currently, the complete version of
CHATASSERT is best used asynchronously, to generate a batch
of oracles for multiple test methods. Future developments in
open-source LLMs may enable synchronous usage. It is worth
noting that CHATASSERT-DR may be used synchronously. It
is significantly faster compared to the complete version of
CHATASSERT.

3) Future Enhancements: Based on the negative examples
of CHATASSERT shown in section VI-A, we note the fol-
lowing weaknesses of CHATASSERT: (a) Anonymous inner
classes. When the context contains anonymous inner classes,
CHATASSERT is unable to generate an exact match oracle.
(b) Anonymous arrays. CHATASSERT is unable to generate
anonymous arrays as the arguments of the oracles. (c) Con-
cretizing STR token. Similar to TECO, CHATASSERT replaces
string literals with the STR token which prevents us from eval-
uating the ability of these techniques to generate correct string
literals. (d) Deduplicating equivalent oracles. CHATASSERT
does not deduplicate the semantically equivalent oracles which
can reduce the diversity among the generated oracles. Future
enhancements can address these limitations of CHATASSERT
and optimize time to generate oracles.

C. Threats to Validity

One threat to construct validity relates to the choice of
metrics we used to evaluate the techniques. As in prior works,
to deal with that threat, we use two different kinds of metrics
to show the different perspectives about the results. One
threat to internal validity relates to mistakes that we might
have made during the implementation. To mitigate that, we
carefully inspected the code and walked through executions.
One threat to external validity is the choice of datasets and the
sampling criterion we used to reduce the cost to an acceptable
level. We based our experiments on the TECO dataset, which
is publicly available. Considering sampling, we determined
the sampling size to produce results that are within a 95%
confidence interval (of representing the actual result) and used
stratified sampling to ensure that all projects are uniformly
represented in the sample. Another threat to external validity
is the possibility of our test cases appearing in the training
dataset of ChatGPT. Since ChatGPT is a closed model and
the training data are not available to end users of ChatGPT,
it is difficult to determine whether a test case belongs to the
training dataset of ChatGPT. To mitigate this threat, we check
whether ChatGPT can generate an exact match oracle at the
first attempt, by reviewing the Acc@1 performance of the
model CHATGPT-ONE from Section V-B. Since the Acc@1

score of CHATGPT-ONE is very low (0.10), we say that it is
unlikely that ChatGPT has seen most of our test cases in its
training dataset.

VII. RELATED WORK

This section elaborates on work most related to ours.
Oracle Generation. Several approaches have been pro-

posed in the literature to address the oracle generation prob-
lem. We briefly discuss a subset of these approaches that do not
rely on machine learning. Randoop generates assert statements
based on user-provided contracts and uses execution feedback
to guide (test and) regression oracle generation [62], [63].
EvoSuite performs random mutations in the application code
and generates assert statements to maximize the number of
killed mutants [64]. Approaches that use Natural Language
Processing [65]–[70] and Grammar-based fuzzing have also
been explored [71] to mine likely oracles.

More recently, deep learning-based assert statement gen-
eration has been mentioned to generate high-quality assert
statements [1], [4]. ATLAS [1] trains a Seq2seq model [49] for
the assertion generation task and uses a beam search decoder
on that model to obtain assertions for a corresponding input,
i.e., a pair of test prefix and focal method. Mastropaolo et
al. [2] pretrains a CODE-T5 model [37] on a subset of the
CodeSearchNet dataset [72] and fine-tunes on the ATLAS
dataset [1] for the assertion generation task. TOGA [4] uses
a grammar to generate assertions and a fine-tuned Code-
BERT model [50] to predict assertion likelihood. TECO [5]
is an encoder-decoder transformer model that is fine-tuned
on different code semantics data, the test prefix, and the
method under test. SAGA [73] is a deep learning model that
is trained with the test prefix, focal method, and a basic
focal method summary for the task of assertion generation.
However, we perform an extensive program analysis of the
test prefix to extract method calls, object instantiations, and
variable assignments which we ask ChatGPT to automatically
summarize. Our technique utilizes the conversational ability
of the pre-trained large language model ChatGPT along with
few-shot prompting, and static and dynamic repair to achieve
superior performance.

Automated Code Repair. Neural Machine Translation
(NMT)-based architectures have recently been successfully
adopted for Automated Code Repair tasks [74]–[77]. In [74],
authors use a perturbation step to generate training samples
for program repair and then train a transformer neural network
to generate the repaired program. In [75], [76], authors train
NMT models with a focus on automatic program repair. More
recently, Xia and Zhang proposed ChatRepair to repair code
using execution and conversation using ChatGPT [45]. We also
use ChatGPT’s conversational ability, e.g., to ask for a repair
of a failing assertion. It is worth noting that CHATASSERT tries
to fix compilation errors due to missing identifiers without the
assistance of ChatGPT.

Large Language Models. Deep learning has emerged as
an alternative way of creating software engineering tech-
niques [20]. Earlier work often trains task-specific models
in a supervised manner, e.g., for bug detection [78]–[80],
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type prediction [81]–[84], program repair [77], [85]–[87],
and code completion [88]–[90]. More recent work builds on
pre-trained models, such as CodeBERT [50], GraphCode-
BERT [91], and PLBART [92], by fine-tuning these models for
specific tasks, e.g., code completion [93], code editing [94],
program repair [95], and pruning call graphs [96]. Even
more recent work builds on general-purpose, large language
models (LLMs) [97], e.g., Codex [98], InCoder [24], and
PolyCoder [99]. Once trained on huge datasets, an LLM
can be queried with few-shot prompts, i.e., by providing a
small number of task-specific input-output examples to the
model. Recent work shows the potential of LLMs to support
downstream analyses [5]–[13]. The novel aspect of our work is
the idea of iteratively querying the LLM for oracle generation.

VIII. CONCLUSION

Oracle generation is an important and challenging prob-
lem. Recent neural-based techniques have been proposed to
address the problem, but they are inaccurate. Improving the
accuracy of oracle generation techniques is imperative to make
them more practical. We propose CHATASSERT, a feedback-
driven oracle generation technique that iteratively incorporates
dynamic and static information in prompts to query a large
language model. Results show that CHATASSERT significantly
outperforms the baseline techniques. For example, compared
to the SoTA technique TECO, CHATASSERT improves Acc@1
by 15%. Additionally, results confirm that tests augmented
with CHATASSERT-generated oracles have much higher mu-
tation test strength and therefore higher bug-finding effective-
ness. An ablation study shows that all four components of
CHATASSERT are relevant, with examples being slightly less
relevant. Our results provide initial evidence of the promising
performance of CHATASSERT and call for further work that
incorporates external tools to cooperate with LLMs to solve
Software Engineering tasks.
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